
Book Review

Component Software: Beyond Object Oriented Programming,
Second Edition
by Clemens Szyperski

Addison-Wesley, 2003

ISBN: 0-201-74572-0
Cover Price: US$54.99
608 Pages

What are software components? We all have a preconceived notion of
what they are but have difficulty putting our thoughts into words. It is
very challenging to define something that is so abstract. That is why
Clemens Szyperski, a well-established researcher and writer on the
subject of component technology, has taken 589 pages to explain it. In
the very beginning of his book he states that:

Software components are binary units of independent
production, acquisition, and deployment that interact to form a
functioning system.

Don't worry if you don't understand this, because the book goes on to
explain in great detail what components can be and how they are used in
today's industry. First, Szyperski introduces the basic theory behind
components; then he covers many technological practices, including object-
oriented principles and Web services; and finally, he closes by introducing
even more theory and then wrapping everything up in a conclusion.

The book remains demanding, though. Szyperski warns readers early on
that some of the upcoming passages are difficult reads, and I did find that
some of his points went way over my head. He targets mainly computer
theorists, systems architects, and integrators, software developers, and
CTOs, and assumes familiarity with object-oriented principles. As the book
focuses on theory rather than code, it is not a good reference for specific
languages such as C#. It does, however, explain why programmers use
each specific language. I definitely recommend it for anyone searching for
an in-depth look at today's component technology. If you have a fear of
computer-related acronyms, Component Software will become an
invaluable tool for you.

Are Objects Components?

Copyright Rational Software 2003 http://www.therationaledge.com/content/apr_03/r_componentSoftware_cs.jsp

In his opening discussion of component theory, Szyperski posits that a
component has three characteristic properties:

● It can be deployed independently.

● It is a unit of third-party composition.

● It has no (externally) observable state.

Since most programmers today use object oriented-based languages such
as Java and C++, they intuitively think of objects and libraries as
components. There is little dispute that libraries should be classified as
components, but there is much debate over whether objects are
components. Szyperski says that an object:

● Is a unit of instantiation; it has a unique identity.

● Unlike a component, may have state, and this can be externally
observable.

● Encapsulates its state and behavior.

Note the conflict: Components cannot, technically speaking, have
externally observable states. So, although some objects can act as
components, it is not accurate to classify all objects as components,
Szyperski explains. Also note that not all objects used in an application are
from third parties; many are developed in-house. Just because an object
can be instantiated many times within an application does not necessarily
mean it will have any functional value within another; in other words, it is
not necessarily a reusable component. Objects created by third parties are
typically contained within libraries, which are built for reuse. Those objects
are considered to be components -- but again, as only some objects act as
third-party components, it is simply inaccurate to classify all objects as
components.

The Component Dilemma

To be a component or to not be a component. That is the big question
Szyperski poses in the theory section. Basically, he argues that if you can't
foresee reuse for a piece of software, then it may be more efficient and
cost-effective to create custom methods.

Typically a component includes an interface that a client uses to
communicate with the component. If the component is based on a black
box model, the client may have very little knowledge of the component's
inner workings, which makes the interface crucial to understanding what
the component does and how to communicate with it. The problem is, as
Szyperski explains it, that the more specifically a component's function
addresses your particular needs, the more intricate the interface becomes;
this can result in less potential for component reuse and unjustifiable
development costs, especially if you need only a small portion of that
functionality yourself. The unofficial "standard" in the component field says
that a component must be used at least 2.5 times in order to prove its

value and justify your investment. If you can't foresee this much reuse,
then it may not pay to build a component interface.

On the flip side, if your component has less functionality and an easier
interface, you may need more components to perform your desired task,
and tracking them may become an even larger challenge. The key to
creating good component architecture is to find a happy medium and
create components that are both manageable and reusable.

Comprehensive Technology Coverage

The technology section, which comprises most of the book, is dedicated to
specific uses of components with today's technology and principles; it even
discusses components in the software market. Szyperski starts with
principles such as inheritance (how to avoid it), polymorphism, and
subtypes and explains how they come into play when you build
components. Later, Szyperski compares his own definition of components
with those of other industry experts such as Rational's Grady Booch. In his
book, Software Components with Ada: Structures, Tools and Subsystems
(1987), Booch includes this definition:

A reusable software component is a logically cohesive, loosely
coupled module that denotes a single abstraction.

Written more than sixteen years ago, this reflect's Booch's visionary
thinking, although the definition does not acknowledge environmental
dependencies or require that a component be independently deployable.

The most useful part of this section is near the end, where Szyperski
analyzes how some of the industry's leading technologies -- J2EE, .NET,
CORBA, COM, SOAP, and XML -- relate not only to components and Web
services, but also to each other. He explains the purposes behind Servlets,
Enterprise JavaBeans, Swing, AWT, and different Java platforms such as
J2EE, J2SE and J2ME. He does an excellent job of summarizing .NET, J2EE
and Component Pascal and explaining the different ways that companies
cope with designing component architecture. Though Szyperski now works
for Microsoft, I detected no evidence of bias toward Microsoft products.

A Definition?

Don't expect to find a conclusive definition of components in this book.
That is not Szyperski's purpose. Instead, he provides a great deal of
helpful detail about the theories, people, and market forces driving
component software. At the end of the book, I felt satisfied. Szyperski
showed me why it is impossible to pin down a single, formal definition of a
component, and he did what was appropriate: educate the reader and
leave the issue open for further discussion.

-Jeff Livingston
Rational Software
IBM Software Group

For more information on the products or services discussed in this
article, please click here and follow the instructions provided.
Thank you!

Copyright Rational Software 2003 | Privacy/Legal Information

	rational.com
	The Rational Edge -- April 2003 -- Book Review - Component Software: Beyond Object Oriented Programming

