
Book Review

Hacker's Delight
by Henry S. Warren, Jr.

Addison Wesley, 2002

 ISBN: 0-201-91465-4
Cover Price: US$39.99
306 Pages

Hacker's Delight by Henry S. Warren Jr. is a delight indeed. Despite its
title, this volume of mathematical programming tricks has nothing to do
with breaking into other people's computers. Warren is a hacker in the
original sense of the word: someone who enjoys writing clever code and
finding elegant solutions to computing problems. He discovered many of
the tricks and methods he presents in the book during a forty-year career
working on compilers and computer architecture with IBM's Research
Division. His collection of code snippets and equations range from basic
arithmetic operations to sophisticated mathematics.

Computer math may not be a subject that appeals to a broad range of
readers, but this book is a gold mine of useful methods and information
for those who are interested. The engineer writing a compiler, a math
library, or any highly optimized code will find the book indispensable.
Anyone familiar with assembly language will find the book accessible and
interesting. It can be read from front to back, used as a reference, or
enjoyed in the manner Guy Steele describes in his foreword to the book:
"Devouring these little programming nuggets was like eating peanuts, or
rather bonbons -- I just couldn't stop -- and there was a certain richness
to them, a certain intellectual depth, elegance, even poetry."

The book begins by giving a set of formulas for simple operations that one
might encounter in the course of writing assembly-level programs. For
example, the fastest way to determine whether an unsigned integer is a
power of 2 is:

x & (x-1)

If x is a power of two, the expression evaluates to zero; for other numbers
it is nonzero. This section of the book can take days to finish because, for
the reader who enjoys recreational bit-wrangling, it is tempting to take a
pencil and test each of Warren's assertions. Like many of Warren's
formulas, x & (x-1) is not an obvious solution at first glance, but once you

Copyright Rational Software 2002 http://www.therationaledge.com/content/nov_02/r_hackersDelight_sm.jsp

work through it and look at the bits, you can see that it works. In this
instance, I tried 8 (a power of 2) and 6 (not a power of 2):

x = 8 6
x = 0000 1000 or 0000 0110
x-1 = 0000 0111 0000 0101
x & (x-1) = 0000 0000 0000 0100
 zero nonzero

The book goes on to give formulas for counting the 1-bits in a word,
isolating the rightmost 1-bit, flipping the rightmost contiguous string of 1-
bits, shifting and propagating bits, reversing the order of bits and bytes,
transposing a matrix, and so on. More than half the book is a collection of
methods for doing basic calculations efficiently. Code examples are given
either in C or in a simplified assembly language the book defines for 32-bit
RISC machines.

Code for Simple to Complex Mathematical
Operations

In the course of everyday software engineering, most of us just link our
programs with a standard math library and take it for granted that the
machine knows how to perform multiplication, division, and other
operations on unsigned and signed integers, long integers, floating-point
numbers, and so on. This book goes into greater detail, explaining exactly
how to do each of these calculations.

After disposing of basic arithmetic operations, Warren turns his attention
to more complex math problems -- calculating square roots, for example.
His discussion of the subject is both complex and simple. First, he explains
Newton's method of computing square roots through a page full of
equations that require some effort to follow -- but then he gives an
implementation that requires fewer than twenty lines of C code. This is
followed by another method that is longer and more cryptic but executes
faster, by using a binary search algorithm. Whether you are interested in
the equations or merely need the C code to do your job, Warren's
solutions are efficient and elegant. Here is his code for computing an
integer square root using Newton's method:

int isqrt (unsigned x) {
 unsigned x1;
 int s, g0, g1;

 if (x <= 1) return x;
 s = 1;
 x1 = x - 1;
 if (x1 > 65535) {s = s + 8; x1 = x1 >> 16; }
 if (x1 > 255) {s = s + 4; x1 = x1 >> 8; }
 if (x1 > 15) {s = s + 2; x1 = x1 >> 4; }
 if (x1 > 3) {s = s + 1;}

 g0 = 1 << s; // g0 = 2**s.
 g1 = (g0 + (x >> s)) >> 1; //g1 = (g0 + x/g0)/2.

 while (g1 < g0) {
 g0 = g1;
 g1 = (g0 + (x/g0)) >> 1;
 }
 return g0;
}

The book also offers similar solutions for computing cube roots,
exponents, and logarithms.

Pursuit of Fascinating Problems

The last few chapters of the book discuss topics chosen seemingly at
random from a range of mathematical subjects the author has found
interesting. One of the more fascinating chapters, which is far "outside the
box" in relation to today's computers, discusses unusual bases for number
systems and considers their possible use in computing. Base -2, for
example, is a system in which both positive and negative numbers can be
represented without using an explicit sign bit. As in the more familiar
binary system, negabinary numbers are represented by 0/1 bits -- but the
sign flips in every other digit. So instead of the digits being valued (1, 2,
4, 8, 16…), they are valued (0, 1, -2, 4, -8, 16…). The advantage of
negabinary numbers is their simplicity in representing negative numbers,
but their downside is that negabinary arithmetic operations such as
division are quite complicated. Warren also discusses positive and
negative complex base systems. In bases in which digits are valued based
on powers of the numbers (-1 + i) or (-1 - i), all numbers both real and
imaginary can be represented by 0/1 bits. He briefly touches on base e
numbers, and finally considers the question of which base is the most
efficient one for computing.

Other topics Warren addresses include Gray codes, the Hilbert curve, and
prime numbers. Gray codes are a method of arranging the integers from 1
to N in a list so that each number can be visited exactly once by flipping
only one bit at a time. The Hilbert curve is a similar idea expressed
geometrically: a single continuous curve which, given a space divided into
a grid of squares, touches every square exactly once and does not cross
itself. In each case, Warren provides both the mathematical discussion
and the code to solve the problem.

The chapter on prime numbers is the most challenging mathematically but
also one of the most interesting. It starts with a concise overview of
various mathematicians' efforts to devise ways of finding prime numbers.
"Like many young students, I once became fascinated with prime
numbers, and tried to find a formula for them," explains Warren. Actually,
this statement is the key to the whole book. The author is one of those
people who periodically become fascinated by some problem and devote
themselves to learning more about it and searching for a solution.

The chapter ends not with Warren's usual code sample, but instead with
an invitation to continue the search for interesting solutions to the
problem. Clearly, the author views this book not as a finished collection,
but rather as a snapshot of work in progress. After decades of interest-

driven research, Henry Warren has amassed a collection of studies big
enough to fill a book. It is fortunate for the rest of us that he has written
one, and I look forward to the next installment.

-Susan McVey
Software Quality Engineer
Rational Software

For more information on the products or services discussed in this
article, please click here and follow the instructions provided.
Thank you!

Copyright Rational Software 2002 | Privacy/Legal Information

	rational.com
	The Rational Edge -- November 2002 -- Book Review - Hacker's Delight

